Select Page
NOTE: This is a static archive of an old blog, no interactions like search or categories are current.

Extending Puppet using types, providers, facts and functions are well known and widely done. Something new is how to add entire new data types to the Puppet DSL to create entirely new language behaviours.

I’ve done a bunch of this recently with the Choria Playbooks and some other fun experiments, today I’ll walk through building a small network wide spec system using the Puppet DSL.

Overview


A quick look at what we want to achieve here, I want to be able to do Choria RPC requests and assert their outcomes, I want to write tests using the Puppet DSL and they should run on a specially prepared environment. In my case I have a AWS environment with CentOS, Ubuntu, Debian and Archlinux machines:

Below I test the File Manager Agent:

  • Get status for a known file and make sure it finds the file
  • Create a brand new file, ensure it reports success
  • Verify that the file exist and is empty using the status action

cspec::suite("filemgr agent tests", $fail_fast, $report) |$suite| {
 
  # Checks an existing file
  $suite.it("Should get file details") |$t| {
    $results = choria::task("mcollective", _catch_errors => true,
      "action" => "filemgr.status",
      "nodes" => $nodes,
      "silent" => true,
      "fact_filter" => ["kernel=Linux"],
      "properties" => {
        "file" => "/etc/hosts"
      }
    )
 
    $t.assert_task_success($results)
 
    $results.each |$result| {
      $t.assert_task_data_equals($result, $result["data"]["present"], 1)
    }
  }
 
  # Make a new file and check it exists
  $suite.it("Should support touch") |$t| {
    $fname = sprintf("/tmp/filemgr.%s", strftime(Timestamp(), "%s"))
 
    $r1 = choria::task("mcollective", _catch_errors => true,
      "action" => "filemgr.touch",
      "nodes" => $nodes,
      "silent" => true,
      "fact_filter" => ["kernel=Linux"],
      "fail_ok" => true,
      "properties" => {
        "file" => $fname
      }
    )
 
    $t.assert_task_success($r1)
 
    $r2 = choria::task("mcollective", _catch_errors => true,
      "action" => "filemgr.status",
      "nodes" => $nodes,
      "silent" => true,
      "fact_filter" => ["kernel=Linux"],
      "properties" => {
        "file" => $fname
      }
    )
 
    $t.assert_task_success($r2)
 
    $r2.each |$result| {
      $t.assert_task_data_equals($result, $result["data"]["present"], 1)
      $t.assert_task_data_equals($result, $result["data"]["size"], 0)
    }
  }
}

I also want to be able to test other things like lets say discovery:

  cspec::suite("${method} discovery method", $fail_fast, $report) |$suite| {
    $suite.it("Should support a basic discovery") |$t| {
      $found = choria::discover(
        "discovery_method" => $method,
      )
 
      $t.assert_equal($found.sort, $all_nodes.sort)
    }
  }

So we want to make a Spec like system that can drive Puppet Plans (aka Choria Playbooks) and do various assertions on the outcome.

We want to run it with mco playbook run and it should write a JSON report to disk with all suites, cases and assertions.

Adding a new Data Type to Puppet


I’ll show how to add the Cspec::Suite data Type to Puppet. This comes in 2 parts: You have to describe the Type that is exposed to Puppet and you have to provide a Ruby implementation of the Type.

Describing the Objects


Here we create the signature for Cspec::Suite:

# modules/cspec/lib/puppet/datatypes/cspec/suite.rb
Puppet::DataTypes.create_type("Cspec::Suite") do
  interface <<-PUPPET
    attributes => {
      "description" => String,
      "fail_fast" => Boolean,
      "report" => String
    },
    functions => {
      it => Callable[[String, Callable[Cspec::Case]], Any],
    }
  PUPPET
 
  load_file "puppet_x/cspec/suite"
 
  implementation_class PuppetX::Cspec::Suite
end

As you can see from the line of code cspec::suite(“filemgr agent tests”, $fail_fast, $report) |$suite| {….} we pass 3 arguments: a description of the test, if the test should fail immediately on any error or keep going and there to write the report of the suite to. This corresponds to the attributes here. A function that will be shown later takes these and make our instance.

We then have to add our it() function which again takes a description and yields out `Cspec::Case`, it returns any value.

When Puppet needs the implementation of this code it will call the Ruby class PuppetX::Cspec::Suite.

Here is the same for the Cspec::Case:

# modules/cspec/lib/puppet/datatypes/cspec/case.rb
Puppet::DataTypes.create_type("Cspec::Case") do
  interface <<-PUPPET
    attributes => {
      "description" => String,
      "suite" => Cspec::Suite
    },
    functions => {
      assert_equal => Callable[[Any, Any], Boolean],
      assert_task_success => Callable[[Choria::TaskResults], Boolean],
      assert_task_data_equals => Callable[[Choria::TaskResult, Any, Any], Boolean]
    }
  PUPPET
 
  load_file "puppet_x/cspec/case"
 
  implementation_class PuppetX::Cspec::Case
end

Adding the implementation


The implementation is a Ruby class that provide the logic we want, I won’t show the entire thing with reporting and everything but you’ll get the basic idea:

# modules/cspec/lib/puppet_x/cspec/suite.rb
module PuppetX
  class Cspec
    class Suite
      # Puppet calls this method when it needs an instance of this type
      def self.from_asserted_hash(description, fail_fast, report)
        new(description, fail_fast, report)
      end
 
      attr_reader :description, :fail_fast
 
      def initialize(description, fail_fast, report)
        @description = description
        @fail_fast = !!fail_fast
        @report = report
        @testcases = []
      end
 
      # what puppet file and line the Puppet DSL is on
      def puppet_file_line
        fl = Puppet::Pops::PuppetStack.stacktrace[0]
 
        [fl[0], fl[1]]
      end
 
      def outcome
        {
          "testsuite" => @description,
          "testcases" => @testcases,
          "file" => puppet_file_line[0],
          "line" => puppet_file_line[1],
          "success" => @testcases.all?{|t| t["success"]}
        }
      end
 
      # Writes the memory state to disk, see outcome above
      def write_report
        # ...
      end
 
      def run_suite
        Puppet.notice(">>>")
        Puppet.notice(">>> Starting test suite: %s" % [@description])
        Puppet.notice(">>>")
 
        begin
          yield(self)
        ensure
          write_report
        end
 
 
        Puppet.notice(">>>")
        Puppet.notice(">>> Completed test suite: %s" % [@description])
        Puppet.notice(">>>")
      end
 
      def it(description, &blk)
        require_relative "case"
 
        t = PuppetX::Cspec::Case.new(self, description)
        t.run(&blk)
      ensure
        @testcases << t.outcome
      end
    end
  end
end

And here is the Cspec::Case:

# modules/cspec/lib/puppet_x/cspec/case.rb
module PuppetX
  class Cspec
    class Case
      # Puppet calls this to make instances
      def self.from_asserted_hash(suite, description)
        new(suite, description)
      end
 
      def initialize(suite, description)
        @suite = suite
        @description = description
        @assertions = []
        @start_location = puppet_file_line
      end
 
      # assert 2 things are equal and show sender etc in the output
      def assert_task_data_equals(result, left, right)
        if left == right
          success("assert_task_data_equals", "%s success" % result.host)
          return true
        end
 
        failure("assert_task_data_equals: %s" % result.host, "%s\n\n\tis not equal to\n\n %s" % [left, right])
      end
 
      # checks the outcome of a choria RPC request and make sure its fine
      def assert_task_success(results)
        if results.error_set.empty?
          success("assert_task_success:", "%d OK results" % results.count)
          return true
        end
 
        failure("assert_task_success:", "%d failures" % [results.error_set.count])
      end
 
      # assert 2 things are equal
      def assert_equal(left, right)
        if left == right
          success("assert_equal", "values matches")
          return true
        end
 
        failure("assert_equal", "%s\n\n\tis not equal to\n\n %s" % [left, right])
      end
 
      # the puppet .pp file and line Puppet is on
      def puppet_file_line
        fl = Puppet::Pops::PuppetStack.stacktrace[0]
 
        [fl[0], fl[1]]
      end
 
      # show a OK message, store the assertions that ran
      def success(what, message)
        @assertions << {
          "success" => true,
          "kind" => what,
          "file" => puppet_file_line[0],
          "line" => puppet_file_line[1],
          "message" => message
        }
 
        Puppet.notice("&#x2714;︎ %s: %s" % [what, message])
      end
 
      # show a Error message, store the assertions that ran
      def failure(what, message)
        @assertions << {
          "success" => false,
          "kind" => what,
          "file" => puppet_file_line[0],
          "line" => puppet_file_line[1],
          "message" => message
        }
 
        Puppet.err("✘ %s: %s" % [what, @description])
        Puppet.err(message)
 
        raise(Puppet::Error, "Test case %s fast failed: %s" % [@description, what]) if @suite.fail_fast
      end
 
      # this will show up in the report JSON
      def outcome
        {
          "testcase" => @description,
          "assertions" => @assertions,
          "success" => @assertions.all? {|a| a["success"]},
          "file" => @start_location[0],
          "line" => @start_location[1]
        }
      end
 
      # invokes the test case
      def run
        Puppet.notice("==== Test case: %s" % [@description])
 
        # runs the puppet block
        yield(self)
 
        success("testcase", @description)
      end
    end
  end
end

Finally I am going to need a little function to create the suite – cspec::suite function, it really just creates an instance of PuppetX::Cspec::Suite for us.

# modules/cspec/lib/puppet/functions/cspec/suite.rb
Puppet::Functions.create_function(:"cspec::suite") do
  dispatch :handler do
    param "String", :description
    param "Boolean", :fail_fast
    param "String", :report
 
    block_param
 
    return_type "Cspec::Suite"
  end
 
  def handler(description, fail_fast, report, &blk)
    suite = PuppetX::Cspec::Suite.new(description, fail_fast, report)
 
    suite.run_suite(&blk)
    suite
  end
end

Bringing it together


So that’s about it, it’s very simple really the code above is pretty basic stuff to achieve all of this, I hacked it together in a day basically.

Lets see how we turn these building blocks into a test suite.

I need a entry point that drives the suite – imagine I will have many different plans to run, one per agent and that I want to do some pre and post run tasks etc.

plan cspec::suite (
  Boolean $fail_fast = false,
  Boolean $pre_post = true,
  Stdlib::Absolutepath $report,
  String $data
) {
  $ds = {
    "type"   => "file",
    "file"   => $data,
    "format" => "yaml"
  }
 
  # initializes the report
  cspec::clear_report($report)
 
  # force a puppet run everywhere so PuppetDB is up to date, disables Puppet, wait for them to finish
  if $pre_post {
    choria::run_playbook("cspec::pre_flight", ds => $ds)
  }
 
  # Run our test suite
  choria::run_playbook("cspec::run_suites", _catch_errors => true,
    ds => $ds,
    fail_fast => $fail_fast,
    report => $report
  )
    .choria::on_error |$err| {
      err("Test suite failed with a critical error: ${err.message}")
    }
 
  # enables Puppet
  if $pre_post {
    choria::run_playbook("cspec::post_flight", ds => $ds)
  }
 
  # reads the report from disk and creates a basic overview structure
  cspec::summarize_report($report)
}

Here’s the cspec::run_suites Playbook that takes data from a Choria data source and drives the suite dynamically:

plan cspec::run_suites (
  Hash $ds,
  Boolean $fail_fast = false,
  Stdlib::Absolutepath $report,
) {
  $suites = choria::data("suites", $ds)
 
  notice(sprintf("Running test suites: %s", $suites.join(", ")))
 
  choria::data("suites", $ds).each |$suite| {
    choria::run_playbook($suite,
      ds => $ds,
      fail_fast => $fail_fast,
      report => $report
    )
  }
}

And finally a YAML file defining the suite, this file describes my AWS environment that I use to do integration tests for Choria and you can see there’s a bunch of other tests here in the suites list and some of them will take data like what nodes to expect etc.

suites:
  - cspec::discovery
  - cspec::choria
  - cspec::agents::shell
  - cspec::agents::process
  - cspec::agents::filemgr
  - cspec::agents::nettest

choria.version: mcollective plugin 0.7.0

nettest.fqdn: puppet.choria.example.net
nettest.port: 8140

discovery.all_nodes:
  - archlinux1.choria.example.net
  - centos7.choria.example.net
  - debian9.choria.example.net
  - puppet.choria.example.net
  - ubuntu16.choria.example.net

discovery.mcollective_nodes:
  - archlinux1.choria.example.net
  - centos7.choria.example.net
  - debian9.choria.example.net
  - puppet.choria.example.net
  - ubuntu16.choria.example.net

discovery.filtered_nodes:
  - centos7.choria.example.net
  - puppet.choria.example.net

discovery.fact_filter: operatingsystem=CentOS

Conclusion


So this then is a rather quick walk through of extending Puppet in ways many of us would not have seen before. I spent about a day getting this all working which included figuring out a way to maintain the mutating report state internally etc, the outcome is a test suite I can run and it will thoroughly drive a working 5 node network and assert the outcomes against real machines running real software.

I used to have a MCollective integration test suite, but I think this is a LOT nicer mainly due to the Choria Playbooks and extensibility of modern Puppet.

$ mco playbook run cspec::suite --data `pwd`/suite.yaml --report `pwd`/report.json

The current code for this is on GitHub along with some Terraform code to stand up a test environment, it’s a bit barren right now but I’ll add details in the next few weeks.